Constacyclic Symbol-Pair Codes: Lower Bounds and Optimal Constructions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes

Symbol-pair code is a new coding framework which is proposed to correct errors in the symbolpair read channel. In particular, maximum distance separable (MDS) symbol-pair codes are a kind of symbol-pair codes with the best possible error-correction capability. Employing cyclic and constacyclic codes, we construct three new classes of MDS symbol-pair codes with minimum pairdistance five or six. ...

متن کامل

New constructions of MDS symbol-pair codes

Motivated by the application of high-density data storage technologies, symbol-pair codes are proposed to protect against pair-errors in symbol-pair channels, whose outputs are overlapping pairs of symbols. The research of symbol-pair codes with large minimum pair-distance is interesting since such codes have the best possible error-correcting capability. A symbol-pair code attaining maximal mi...

متن کامل

On optimal constacyclic codes

In this paper we investigate the class of constacyclic codes, which is a natural generalization of the class of cyclic and negacyclic codes. This class of codes is interesting in the sense that it contains codes with good or even optimal parameters. In this light, we propose constructions of families of classical block and convolutional maximum-distance-separable (MDS) constacyclic codes, as we...

متن کامل

Optical orthogonal codes: Their bounds and new optimal constructions

A (v, k, λa, λc) optical orthogonal code C is a family of (0, 1)-sequences of length v and weight k satisfying the following two correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λa for any x = (x0, x1, . . . , xv−1) and any integer i 6≡ 0 mod v; and (2) ∑ 0≤t≤v−1xtyt+i ≤ λb for any x = (x0, x1, . . . , xv−1), y = (y0, y1, . . . , yv−1) with x 6= y, and any integer i, where subscripts are taken mod...

متن کامل

Separating Codes: Constructions and Bounds

Separating codes, initially introduced to test automaton, have revived lately in the study of fingerprinting codes, which are used for copyright protection. Separating codes play their role in making the fingerprinting scheme secure agains coalitions of pirates. We provide here better bounds, constructions and generalizations for these codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2017

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2017.2753250